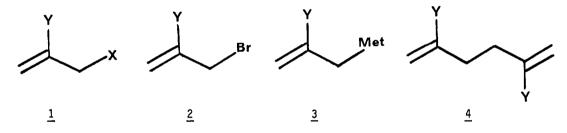
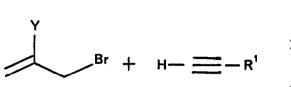
Tetrahedron Letters, Vol.25, No.14, pp 1475-1478, 1984 0040-4039/84 \$3.00 + .00 Printed in Great Britain ©1984 Pergamon Press Ltd.


ADDITION OF FUNCTIONALIZED ALLYLIC BROMIDES TO TERMINAL ALKYNES

P. KNOCHEL, J.F. NORMANT

Laboratoire de Chimie des Organo-Eléments, tour 44-45 4 place Jussieu 75230 PARIS Cédex 05 France


Summary -

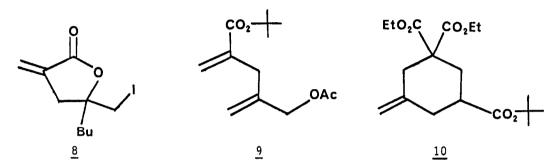
Bromoesters 2a, 2b and bromophosphonates 2c, 2d add regioselectively to terminal alkynes in the presence of zinc to give the highly functionnalized dienes 4-7 which are cyclized to various six or seven membered carbo- or heterocycles.

Y : functional group

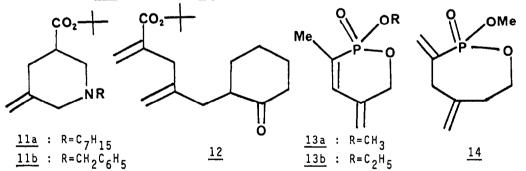
Functionnal allylic systems of type <u>1</u> can react as electrophiles if X is a leaving group ¹⁾ or as nucleophiles if X is a metal ion²⁾. The know carbometallation of alkynes with allyl anions (Y=H, alkyl ; X=Mg²⁺, B³⁺, Zn²⁺)³⁾ led us to examine the reaction of the allylic bromides <u>2</u> with alkynes in the presence of a metal (Barbier conditions⁴⁾ for the generation of the organometallic species <u>3</u>). In such a reaction the following conditions should be met : (i) the Y function must be stable towards the allylic reagent <u>3</u>; (ii) the preparation of <u>3</u> must be as mild as possible to prevent any self-coupling of the bromide <u>2</u> to the diene <u>4</u>. We have found that if the esters <u>2a</u> and <u>2b⁵</u> or the phosphonates <u>2c^{2b}</u> and <u>2d⁶</u> are slowly added at 45-50° and in the presence of sonic wawes ⁷ to a THF solution of a terminal alkyne in the presence of zinc, the expected reaction occurs and the products <u>4</u>, <u>5</u>, <u>6</u> and <u>7</u> are isolated in fair to good yield (see table).

- 2a : Y=COOtert-C₄H₉ $\underline{2b}$: Y=COOC₂H₅
- $\underline{2c}$: Y=PO(OCH₃)₂
- 2d : Y=PO(OCH₂CH₃)₂

- Zn;THF:45-50° ultrasound R^1
 - $\underline{4}$: Y=COOtert-C₄H₉ $5 : Y = COOC_2 H_5$


 - $\frac{6}{2} : Y = PQ(OCH_3)_2$ $\frac{7}{2} : Y = PO(OC_2H_5)_2$

Entry	2	R ¹	Product	Yield ^a
1	<u>2a</u>	-C ₄ H ₉	<u>4a</u>	70
2	n	-CH ₂ OSiMe ₃	<u>4 b</u>	81
3	n	-CH ₂ CH ₂ OSiMe ₃	<u>4c</u>	70
4	u	-CH ₂ 0 tert-C ₄ H ₉	<u>4 d</u>	64
5	u	-CH < CH ₃ OSiMe ₃	<u>4e</u>	54
6	n	- CH ₂ SC ₆ H ₅	<u>4 f</u>	55
7		-CH2-CH(0C2H5)2	<u>4 q</u>	60
8	<u>2b</u>	-CH ₂ 0 tert.C ₄ H ₉	<u>5 a</u>	62
9		-CH2DSIMe3	<u>5 b</u>	68
10	<u>2c</u>	-C ₄ H ₉	<u>6a</u>	48
11	u	-CH ₂ -OSiMe ₃	<u>6</u> b)	72
12		-CH ₂ CH ₂ OSiMe ₃	<u>6c</u> b)	66
13	<u>2d</u>	-CH ₂ OSiMe ₃	<u>7a</u> b)	73
14		-CH ₂ CH ₂ OSiMe ₃	<u>7</u> b)	73


a) The yields given are those of distilled or flash chromatographically purified materials

b-) This compound was desilylated during work-up and isolated as an alcohol

The addition is regiospecific but seems to be sensitive to steric hindrance⁸) (compare entry 2 and 5). The presence of an oxygen atom α , or β to the triple bond, enhances the yield (compare entry 1, 2 and 10, 11, 14). We noticed that allyl bromide reacts under these "Barbier" conditions in the same way⁹). The highly functionnalized diene <u>4-7</u> can be used in various cyclization processes. Treatment of <u>4a</u> with $I_2/K_2CO_3^{-10}$ in THF at 25° C yields the α -methylene lactone <u>8</u> (90%). The trimethylsilyloxy-ester <u>4b</u>

is acetylated with acetyl chloride in acetic acid (88%) to <u>9</u> which is the starting material for a Pd^{o11} mediated synthesis of 6-membered carbo- and heterocycles. In the presence of a catalytic amount of $Pd(PPh_3)_4$ (5% mol.) and 1 eq. Et_3N , the sodium salt of diethylmalonate reacts with ester <u>9</u> (THF, 3h reflux) to give the triester 10 (70%). With primary amines (8% $Pd(PPh_3)_4$, 1.5 eq. Et_3N , 2 eq. RNH_2 , 24 h reflux in THF) we obtained the piperidines <u>11a</u> (82%) and <u>11b</u> (77%)

The reaction of <u>9</u> with an enamine : 1-pyrrolidino-1 cyclohexene in acetonitrile at 25°, in the presence of 10 mol % Pd(PPh₃) and 2 equiv. Et_3N , leads to the open-chain keto-ester 12 in modest yield (50%).

The phosphonates <u>6b</u>, <u>7a</u> are converted to the heterocycles <u>13a</u> and <u>13b</u> by treatment in THF with a catalytic amount of NaH (4 min. at 25°) in quantitative yield, whereas <u>6c</u> gives the unconjugated seven membered ring <u>14</u> (3 days, NaH in THF, 78%).

Carbometallation of alkynes with other functionnalized allylic systems of type $\underline{1}$ (for example Y=SiMe₃) and applications of the formed dienes are

1478

currently investigated.

Typical procedure -

A 100 ml flask was charged under nitrogen with 2.6 g (40 mmol) of zinc (purity 99.999%), 1.5 g (8 mmol) dibromoethane and 7 ml of dry THF. This mixture was shortly boiled to start the formation of ZnBr_2 . After 0.25 h, 3.07 g (24 mmol) of propargyltrimethylsilylether was added rapidly and the flask was immersed in a common laboratory cleaner filled with warm water (55°) Then a solution of 4 g (18.1 mmol) of tert-butyl α -(bromomethyl) acrylate in 12 ml THF was added over 0.75 h. The reaction temperature was maintained between 45° and 50° during the addition. After 10-20 min (VPC control) at 45°, the white-yellow solution was cooled at 0° and 20 ml of aq. NH₄Cl solution and 50 ml ether were added. After filtration, the organic layer was washed with NaCl solution, dried over MgSO₄ and filtered. After distillation 3.76g-3.94g (77%-81%) of pure <u>4b</u> are obtained (72°/10⁻² mmHg).

Acknowledgements -

We thank Dr H. Braunschweiger (Sandoz A.G., Basel) for a generous gift of the ester 2a, and the C.N.R.S. for financial support (ERA 825).

References and Notes -

- D. Seebach and P. Knochel, Helv. Chim. Acta <u>67</u>, (1984) in press and references cited therein
- 2) a) K. Ramarajan, K. Ramalingam, D.J. O'Donnel and K.D. Berlin, Org. Synth. <u>61</u>, 56 ; J.M. Cassady, G.A. Howie, J.M. Robinson and I.K. Stamos, Org. Synth. <u>61</u>, 77 and references cited therein.

b) J.N. Collard and C. Benezra, Tetrahedron Lett. <u>23</u>, 3725 (1982)

- For a review see : J.F. Normant and A. Alexakis, Synthesis, 841 ;
 E. Negishi and J.A. Miller, J. Amer. Chem. Soc. 105, 6761 (1983).
- 4) C. Blomberg and F.A. Hartog, Synthesis, 18 (1977).
- 5) J. Villieras, M. Rambaud, Synthesis, 924 (1982) ; see also ref. 2a.
- 6) J. Villieras, private communication.
- 7) For recent reviews see : J.L. Luche, L'Actualité Chimique, 21 (1982) ;
 P. Boutjouk, Nachr. Chem. Tech. Lab. 31, 798 (1983).
- 8) The formation of diene $\underline{4}$ (Y=COO tert-butyl and COOC₂H₅) is favoured as the steric hindrance of the alkyne is increased.
- 9) We have isolated 2-hexyl-1,4-pentadiene in 64% yield from allyl bromide and 1-octyne. With preformed allylzinc bromide an excess of the reagent seems to be necessary : M. Gaudemar, C.R. Acad. Sci. Paris, <u>273</u>, Série C, 1669 (1971) and F. Bernadou, B. Mauzé, L. Miginiac, C.R. Acad. Sci. Paris, <u>276</u>, Série C, 1645 (1973).
- P.A. Bartlett, J.D. Meadows, E.G. Brown, A. Morimoto, K.K. Jerustedt, J. Org. Chem. 47, 4014 (1982).
- 11) J. Tsuji,Organic Synthesis with palladium compounds, Springer Verlag (1980)